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Humans’ propensity to cooperate is driven by our embeddedness
in social networks. A key mechanism through which networks pro-
mote cooperation is clustering. Within clusters, conditional coop-
erators are insulated from exploitation by noncooperators, allowing
them to reap the benefits of cooperation. Dynamic networks, where
ties can be shed and new ties formed, allow for the endogenous
emergence of clusters of cooperators. Although past work suggests
that either reputation processes or network dynamics can increase
clustering and cooperation, existing work on network dynamics
conflates reputations and dynamics. Here we report results from
a large-scale experiment (total n = 2,675) that embedded partic-
ipants in clustered or random networks that were static or dy-
namic, with varying levels of reputational information. Results
show that initial network clustering predicts cooperation in static
networks, but not in dynamic ones. Further, our experiment
shows that while reputations are important for partner choice,
cooperation levels are driven purely by dynamics. Supplemental
conditions confirmed this lack of a reputation effect. Impor-
tantly, we find that when participants make individual choices
to cooperate or defect with each partner, as opposed to a single
decision that applies to all partners (as is standard in the litera-
ture on cooperation in networks), cooperation rates in static net-
works are as high as cooperation rates in dynamic networks. This
finding highlights the importance of structured relations for sus-
tained cooperation, and shows how giving experimental partic-
ipants more realistic choices has important consequences for
whether dynamic networks promote higher levels of coopera-
tion than static networks.
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Few issues have puzzled both social and biological scientists as
much as the high level of cooperation observed among hu-

mans. Given that cooperation entails paying a cost for another to
receive a benefit, such behavior poses an evolutionary paradox.
Consistent with this logic, empirical research finds low levels of
cooperation in “one-shot” interactions (1). But instead of one-
shot interactions with strangers, much of human social life is
embedded in networks (2). Research shows that repeated in-
teractions in networks are characterized by much higher levels of
cooperation than one-shot interactions (3–15). Further, clus-
tered networks, characterized by dense regions, promote higher
rates of cooperation than random networks (16), and dynamic
networks, where relations can be dropped or new ties formed,
promote even higher levels of cooperation (17–20). Clustering
allows cooperation to thrive by insulating cooperators from ex-
ploitation by noncooperators. By extension, network dynamics
allow conditional cooperators to shed their ties to defectors and
seek out other cooperators, thus endogenously producing highly
cooperative clusters (17).
While several studies have shown the powerful effects of dy-

namic networks on cooperation, it is unclear how much, if any, of
this effect can be attributed to dynamics, per se. Another mech-
anism that promotes cooperation is reputations (11, 21). Several
key studies showing that dynamic networks promote coopera-
tion conflate dynamics with reputation effects (18, 19, 22). That is,

when participants in these studies select new ties, they do so based
on information about the past behaviors of potential partners.
Participants use available reputational information to select new
ties (21, 23–25), and are even willing to incur costs to do so (26,
27). As such, observed rates of cooperation may be driven by
network dynamics, reputational processes, or both. Notably, dy-
namic networks promote cooperation even when new ties form at
random (17, 28). What we cannot know from prior work is the
benefit beyond dynamic network processes of knowing the repu-
tations of others. While Gallo and Yan (21) showed that knowing
the reputations of all others in the network promoted cooperation
over not knowing, the networks in their study were created anew
in each round with participants forming costless ties to as many
others as they wanted. Despite this, other work has shown that
reputations have no effect on cooperation (29).
Our study extends our understanding of dynamic networks and

cooperation in three unique ways. First, we implement four dis-
tinct types of networks. As described more fully below, we study
static networks where ties are unalterable, dynamic networks void
of reputational information, dynamic networks where participants
know the reputations of all others, and a more realistic dynamic
network where participants only know the reputations of their
neighbors’ neighbors, i.e., those two links removed in the net-
work. Unlike the full information condition, this last condition
does not assume omniscience, but instead mimics referral pro-
cesses, where we learn about trustworthy others through our
existing ties. This enables us to distinguish reputational effects
from network dynamics and to further discern whether and how
these dynamics vary with “global” versus “local” reputational
information. The global versus local reputational information
conditions also enable us to examine the endogenous emergence
of clustering under more realistic conditions. Second, we vary
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operation when their existing or emergent topology allows con-
ditional cooperators in the network to isolate themselves from
exploitation by noncooperators. We do not know from prior work
whether the emergent structures that promote cooperation are
driven by reputation or can emerge purely via dynamics, i.e., the
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whether initial networks are random or clustered. This comple-
ments our network manipulation by allowing us to assess whether
initially clustered networks lead to more endogenous clustering
in dynamic networks, and further promote cooperation.
Third, nearly all studies on the evolution of cooperation in

networks force participants to simultaneously cooperate or de-
fect with all alters, or participants to whom they are connected
(18, 19, 22). But in real-world interactions, we are generally able
to cooperate in one relationship while acting more selfishly in
another. Similarly, we are typically able to reciprocate defection
in one of our relations without simultaneously defecting in all our
other relations. The standard design in experimental studies of
networks and cooperation does not allow this. Importantly, we ar-
gue that whether we study cooperation in networks via the standard
design (where a participant’s decision to cooperate or defect nec-
essarily applies to all alters) versus more realistic “targeted” choices
(where a participant makes a decision about whether to cooperate
or defect in each of his/her relationships) has important conse-
quences for our understanding of when and why networks promote
cooperation. The standard design will artificially inflate cooperation
in dynamic networks if participants who are tempted to defect in
some relations instead cooperate to reduce the risk of losing their
ties. Similarly, the standard design will artificially suppress co-
operation in static networks if participants have no other recourse
to punish alters that have previously defected. In other words, the
greater cooperation rates in dynamic versus static networks docu-
mented in prior work may be partly artifactual. Here we aim to
decouple pure structural effects from how participants make their
decisions about whether to cooperate.
To disentangle the effects of clustering, dynamics, and reputa-

tional processes, we conducted a large-scale behavioral experiment
using workers from Amazon’s Mechanical Turk (Materials and
Methods). Workers were embedded within a network and played an
iterated prisoner’s dilemma (PD) game with each of those to whom
they were connected. Participants were able to take part in multiple
conditions, but could not participate in the same condition multiple
times. Across all conditions (described below) there were 1,979
participants, 810 of whom were unique. Participants were randomly
assigned to conditions and then to positions within networks (av-
erage network size = 24.7, SD = 2.7). Each network position was
identified in interactions via a unique, randomly generated letter.
In all conditions, participants began with an endowment of 1,000
monetary units (MUs). Following related work (18), cooperation
entailed paying 50 MUs, which resulted in the alter gaining 100
MUs, while defection entailed paying nothing and generating no
benefits. MUs were converted into dollars at the end of the study.
Participants completed 16 rounds, but (to avoid end-game effects)
were not told how many rounds to expect.
The networks were either static or dynamic. In dynamic networks,

participants could drop one alter and initiate a tie with a new alter
in each round; alters could then approve or decline new tie requests.
Ties were not replaced for participants who were dropped (18, 22,
28, 30). The identifying labels of all prospective alters were dis-
played when participants had the opportunity to add a new tie (see
SI Appendix for screenshots). Prospective new alters were those not
tied to the participant, including those the participant had dropped
in prior rounds. As long as a participant maintained at least one tie,
he/she was eligible to be selected by others for a new tie. Any
participant who lost all of his/her ties became a permanent isolate,
and was excluded from both the network and the tie selection
process for the remainder of the study.
We operationalized network dynamics in three ways. In the “no-

reputation” condition, participants were given no information about
potential alters’ reputations when adding new ties, which is akin to
replacement at random (17, 28). This condition allows us to assess
the effects of pure network dynamics. In the “global-reputation”
condition, participants knew the past cooperative behaviors of all
alters, represented as a percentage of times they cooperated pre-
viously; this type of omniscience is standard in studies of dynamic
networks (18, 19, 22). Finally, we introduced a novel “local-repu-
tation” condition where participants only knew the past cooperative

behaviors of alters that were two steps removed from them in the
network, i.e., those who were connected to one or more of their
own alters. As in the global-reputation condition, participants in the
local-reputation condition were free to choose any alter when ini-
tiating a new tie, but only knew the reputations of their alters’ alters.
This local-reputation condition mimics the real-world process of
referrals where we learn about trustworthy others through our
existing ties and is consistent with how triadic closure is theorized to
operate in social networks (31).
Initial networks were either random (Erdös–Rényi model) or

clustered graphs. In both cases, the initial network density was
0.167, corresponding to an average of about four ties per node in
round 1. The clustering coefficient (coeff) (32) for the random
networks was the same as the density. The clustering coefficient
for the clustered networks was 0.42 at round 1. Crossing random
or clustered with static networks or one of the three types of
dynamic networks yields eight network conditions. We ran
10 networks per condition, for a total of 80 networks.
We also counterbalanced on whether participants’ decisions to

cooperate or defect applied to all alters for a given round (18, 19,
21, 22) or were targeted, i.e., specific to each alter (17, 28). As
noted above, we investigate whether this key methodological
difference affects rates of cooperation and other outcome mea-
sures. As such, in each of our 8 main conditions, we studied five
networks with “diffuse” choices where within a given round,
participants made a single decision to cooperate or defect that
applied to all alters (the standard procedure in the literature)
and five networks with targeted choices for each alter, yielding
16 different conditions.
We expected clustering to matter more for cooperation in

static—versus dynamic—networks, since clustering emerges en-
dogenously in dynamic networks regardless of the initial struc-
ture (17, 18). Within the dynamic networks, we expected higher
rates of cooperation in both reputation conditions, compared
with networks with no reputational information (21). Even the
local-reputation condition, where participants know the reputa-
tions of their alters’ alters, has sufficient information for partici-
pants to select more cooperative partners. For the local-reputation
condition, we expected that participants would be more likely to
select new ties from the set of alters for whom they knew their
reputations. We also expected clustering to endogenously increase
in the local-reputation condition. Participants use reputations to
select partners (21, 24). And only having referrals from alters, as
often happens in real-world networks, increases the likelihood of
triadic closure (31). Similarly, we anticipated a higher hazard of
becoming isolated from the network for defectors in the reputa-
tion conditions. This is because defectors will not only be dropped
by their interaction partners (19), they will also be avoided by
prospective new partners, given their bad reputations.
Finally, we expected differences in cooperation in dynamic

versus static networks to increase under the standard experi-
mental design where participants make a single decision about
whether to cooperate or defect that applies to all alters. As noted
earlier, this could be because diffuse decisions increase co-
operation in dynamic networks, decrease cooperation in static
networks, or both.

Results
Fig. 1 shows the proportion of cooperation by round. What is
immediately apparent is the very high level of cooperation in
dynamic—versus static—networks. In the dynamic conditions,
we find cooperation levels similar to those reported in related
work on dynamic networks (19). Across the dynamic network
conditions, round 1 cooperation rates were 86%. By round
3 there was 99% cooperation, and cooperation remained high for
the remainder of the study. A similar rate of cooperation is ob-
served early in the static networks, but it is not sustained. In round
1, there was 85% cooperation, but by round 16 it was down to 72%.
Moreover, in the dynamic networks, it appears that reputations do
not matter for cooperation: cooperation rates in the no-reputations
conditions were similar to cooperation rates in those conditions
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where reputational information was available. Rather, what matters
is that ties to defectors can be shed.
As expected, Fig. 1 also shows higher cooperation in the

clustered static networks than in the random static networks.
Clustering structurally insulates conditional cooperators, en-
abling them to maintain relatively higher rates of cooperation.
While we expected clustering to have a stronger effect on static
networks than dynamic networks, clustering appears to have no
effect on the dynamic networks. Cooperation is high regardless
of the underlying topology, so long as that topology is malleable.
In essence, dynamic networks prompted noncooperators to be-
come cooperative, or else they became isolated from the net-
work, as elaborated in the hazard model below.
Fig. 2 shows the proportion of cooperation over time by whether

the network was static or dynamic (aggregating over reputation
information) and whether decisions were specific to each alter
(targeted) or applied to all alters simultaneously (diffuse). Tar-
geted or diffuse choices do not affect cooperation in the dynamic
networks (column 2). Perhaps this is unsurprising as participants in
dynamic networks are able to sever ties as a response to a partner’s
defection. But, as expected, whether choices are targeted or dif-
fuse does matter for cooperation in static networks: cooperation
remains high in networks with targeted decisions, but declines
with time in networks with diffuse decisions.

To assess the significance of our manipulated factors on co-
operation, we estimated generalized linear mixed models, with
decisions nested in rounds, rounds nested in participants, and
participants nested in networks (when decisions were diffuse,
there was only one decision nested in each round; see SI Ap-
pendix for subsequent model specifications). We find that par-
ticipants were more likely to cooperate in dynamic networks than
static networks (coeff = 5.47, P < 0.001; SI Appendix, Table S1,
model 1). This replicates several past findings (17–19). We also
find that participants were more likely to cooperate in clustered
networks (main effect = 1.28, P = 0.031), but that this effect is
diminished in dynamic networks (interaction effect = −1.62, P =
0.024; SI Appendix, Table S1, model 1). The SI Appendix reports
supplemental models of cooperation that include a variety of
indicators of participant types, as well as how those types modify
the effects of the manipulated factors.
Cooperation is significantly higher in static networks with

targeted choices than in static networks with diffuse choices,
while the type of choice does not matter for dynamic networks
(coeff for interaction between targeted and dynamic = −3.36,
P < 0.001; SI Appendix, Table S1, model 1). Fig. 3 shows that the
probability of cooperating in static networks with targeted
choices is as high as the probability of cooperating in dynamic
networks with either targeted or diffuse choices (within the
margin of error). The seemingly innocuous methodological de-
tail of whether participants make targeted versus diffuse choices
thus results in a substantial difference in cooperation. As a
consequence, prior work may have overestimated the relative
strength of dynamic versus static networks in promoting co-
operation, due to how it operationalizes cooperation. In short,
while our results highlight the importance of network dynamics
for the evolution of cooperation that have been documented
previously (17–19), they also highlight the importance of network
topology in static networks and show that static networks can
achieve similarly high rates of cooperation as dynamic networks
when participants can make conditional, or targeted, choices.
Defection drove tie deletion in the dynamic networks. Par-

ticipants opted to drop an alter only 6.3% of the time (SI Ap-
pendix, Fig. S3), but when they did so and at least one alter
defected on the previous round, there was a 99% chance that
participants dropped a tie to a defecting alter (P < 0.001; con-
ditional logistic regression with SEs adjusted for networks). Once
participants decided which alter to cut, they selected a new one.
As noted earlier (Fig. 1), dynamics are more important than
reputations to cooperation in our setting. However, when they
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Fig. 1. Proportion of cooperation by round for (A) random static networks,
(B) clustered static networks, (C) random dynamic networks with no repu-
tations, (D) clustered dynamic networks with no reputations, (E) random
dynamic networks with local reputations, (F) clustered dynamic networks
with local reputations, (G) random dynamic networks with global reputa-
tions, and (H) clustered dynamic networks with global reputations.
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were available, reputations still played a role in partner selection.
In the global-reputation condition, participants selected new
alters with positive reputations (coeff = 3.84, P < 0.001; nested
conditional logistic regression). In the local-reputation condi-
tion, participants were more likely to select an alter when they
knew their reputation (coeff = 2.13, P < 0.001), and among
those selected, participants chose alters with positive reputations
(coeff = 5.79, P = 0.003).
The forgoing results show that reputations matter for partner

selection but not for cooperation rates. To understand this oth-
erwise paradoxical set of findings, note that reputations reduce
the risk of participants being exploited by a newly acquired
partner, relative to dynamic networks in which reputations of
prospective partners are unknown. At the same time, partici-
pants in all dynamic network conditions quickly severed ties to
defectors. Participants’ use of this “out for tat” strategy (1, 33)
thus reduced any effects that reputation-based partner selection
might have otherwise had on cooperation rates. As a result,
network dynamics alone were sufficient to maintain high levels
of cooperation.
One alternative explanation for these paradoxical findings is

that reputations may promote cooperation, but we are unable to
observe the effect because the high rates of cooperation in dy-
namic networks created a ceiling effect. To rule out this alter-
native explanation, we ran three additional dynamic network
conditions. All of these networks were initially random. Instead
of updating ties after every round, participants were told that
they would be able to update their ties “periodically (that is, in
some rounds)” (19). In all conditions, participants were able

to update partners every seven rounds. When they updated
partners, they were given either (i) no-reputation information,
(ii) local- reputation information, or (iii) global-reputation in-
formation, depending on the condition. Cooperation occurred
less frequently in these networks than in the dynamic networks in
the main experiment (coeff = 2.72, P < 0.001; SI Appendix, Fig.
S8 and Table S7. This allows us to observe reputation effects if
they occur over and above the significant effects of dynamic
networks. But crucially, there were no differences in cooperation
between the three new conditions, indicating that reputations do
not promote cooperation beyond the effect of network dynamics,
even when there is room for more cooperation. Thus, these re-
sults support our conclusions from the main experiment.
Turning back to our primary experiment, the cooperation

and reputation results imply that through avoidance, defectors
were more likely to become isolated (i.e., have no ties) from the
network in the reputation conditions. Fig. 4 shows the number
of participants that became isolates through time in each of the
dynamic network conditions. More participants became iso-
lated from networks in the local-reputation condition than in
the condition with no-reputation information, and even more
participants became isolates in the global-reputation condition.
We modeled becoming an isolate with a Cox proportional
hazard model with clustered SEs within networks. After con-
trolling for participant defection as a time-varying covariate,
which itself predicts becoming an isolate (coeff = 2.33, P <
0.001), results show that participants in the local-reputation
condition are more likely to become isolated than partici-
pants in the no-reputation condition (coeff = 0.35, P = 0.12),
and that participants in the global-reputation condition are
significantly more likely to become isolated than participants in
the no-reputation condition (coeff = 0.81, P = 0.004; SI Ap-
pendix, Table S3, model 1 and SI Appendix, Fig. S5). In sum,
participants shed ties to defectors and then use reputations to
select new alters. The result of this process is that those par-
ticipants who defect are more likely to become isolated from
the network as their reputation precedes them.
As noted above, participants in dynamic networks opted to

replace relatively few of their ties. On average, they replaced a
tie 6.3% of the time. Most of this change occurred within the first
few rounds (SI Appendix, Fig. S4). After getting feedback about
others’ cooperation in round 1, more than 1 in 3 participants
replaced a tie, but by round 4 only 1 in 20 did so. Thus, the
dynamic networks quickly converged to a stable state of high
cooperation (Fig. 1). This stabilization of the networks is ap-
parent in the amount of clustering observed in the dynamic
networks. As illustrated in Fig. 5, we find that the overall clus-
tering levels off quickly. There is a sizable increase in clustering
in the local-reputation condition (coeff. = 0.118, P < 0.001; Fig.
5B and SI Appendix, Table S5). As participants use reputations to
form new ties, and they only know the reputations of their alters’
alters, clustering increases. Thus, these results show strong
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evidence of triadic closure, a key micromechanism guiding the
emergence of stable clusters (31). There is also a sizable differ-
ence in clustering between those networks that were initially
clustered (Fig. 5D) and those that were initially random (Fig.
5E). However, the initially clustered networks (Fig. 5D) decrease
in clustering early on, as defectors move to the periphery of the
network, and the initially random networks increase in clustering
(Fig. 5E), as cooperators seek out one another. This finding
underscores the interplay between clustering and network dy-
namics. In particular, even in the initially random networks with
no reputation information, the amount of clustering doubles
during the experiment, but levels off as participants either be-
come cooperative or get excluded from the network. As this
occurs, the structure stabilizes, precluding further clustering.
The pattern of earnings by conditions mirrors the cooperation

rates shown in Fig. 1 (SI Appendix, Fig. S7). Participants in dy-
namic networks earn substantially more than those in static
networks (coeff = 14.86, P < 0.001; SI Appendix, Table S6, model
1), and in the dynamic networks, reputations do not impact
earnings. Consistent with the patterns for cooperation in Fig. 1,
whether the networks were initially random or clustered does not
affect the earnings of participants in dynamic networks, but
participants in clustered static networks earned more than those
in random static networks (coeff = 3.63, P = 0.035). Also con-
sistent with patterns of cooperation in Fig. 2, whether decisions
were diffuse or targeted does not affect earnings in dynamic
networks, but participants in static networks with targeted
choices earned more than participants in static networks with
diffuse choices (coeff = 8.36, P < 0.001).
To summarize, as in related work (19), we find very high levels

of cooperation in our dynamic networks. Previous results from
dynamic networks left open the possibility that high rates of
cooperation were driven by either dynamics or reputation pro-
cesses. But we find that only network dynamics, not reputation
information, increases cooperation. When they are available,
participants use reputations when seeking out new ties, but we
found no evidence that the availability of reputational in-
formation increases cooperation or earnings above the effect of
dynamics (29). Reputations, however, result in defectors quickly
moving to the periphery of the network and to an increased
hazard of being isolated from the network altogether. Earlier, we
noted that reputations can impact partner selection and network
dynamics without affecting cooperation rates because partici-
pants in dynamic networks employ an out-for-tat strategy (1, 33)
or “tie reciprocity” (18, 22, 34), whereby they quickly sever ties to
uncooperative alters. This results in high levels of cooperation,

without the need for reputational information. We also find high
rates of cooperation in clustered static networks, and in static
networks where participants make targeted choices. These latter
results highlight the importance of network topology and suggest
that seemingly simple design decisions can have important con-
sequences for our understanding of the extent to which dynamic
networks promote cooperation.

Discussion
This research makes several key contributions to our under-
standing of the power of social networks to shape cooperation
in human populations. First, several prior studies have demon-
strated that dynamic networks promote cooperation, but we can-
not know whether these effects are due to network dynamics,
reputation processes, or both. Humans are more apt to cooperate
when interacting with someone with a prosocial reputation (24,
35). Thus, when new relations form in the presence of reputational
information, cooperation may be driven by either structural
change or reputation-based expectations of cooperation. Past
work has shown that networks with reputational information in-
crease cooperation, but that study had a very high level of fluidity,
where all possible ties could be formed or broken from round to
round (21). That is, the networks were created anew each round
and thus did not constitute a stable structuring of relationships. In
contrast, we find that reputations do not affect decisions to co-
operate (29). All our dynamic networks—regardless of reputa-
tional information—yielded higher levels of cooperation than our
static networks with diffuse choices. The high level of cooperation
we found in dynamic networks is consistent with other studies of
PD games (36). While some studies of dynamic networks (18, 22)
show somewhat lower levels of cooperation than we observe in the
main experiment, those studies allowed far less frequent tie up-
dates. Studies that allow participants to alter ties at more realistic
rates reveal near total cooperation. These results are in line with
ours, but we clarify when and how reputation processes combine
with dynamics to promote cooperation.
Second, while we did not find evidence, either in the main ex-

periment or in the supplemental conditions, that reputations mat-
ter for decisions to cooperate or defect, they were important for
partner selection (24). In our global-reputation condition, we found
that participants selected prospective alters as their reputations
increased. Similarly, in the novel local-reputation condition we
found that participants were more likely to select an alter about
whom they had reputational information, and among them, they
were more likely to select alters with prosocial reputations. The
clusters that emerged were generated by triadic closure, bringing
our understanding of dynamic cooperation networks in line with the
clustering that often characterizes real-world social networks (31).
Third, our work underscores the overall importance of network

topology and its interaction with network dynamics for the evo-
lution of cooperation. In static networks, network topology has a
large effect on cooperation. Clustered static networks showed
substantially higher levels of cooperation than random static net-
works (18). In dynamic networks, the initial structure of relations
is less important, but the fact that the topology is malleable has a
very strong effect on cooperation. That is, in both static and dy-
namic networks, assortment seems to promote cooperation. Ex-
ogenous clustering in static networks, and endogenous clustering
in dynamics ones, results in increased cooperation.
Finally, we show that the rules governing participants’ deci-

sions to cooperate or defect has important implications for co-
operation. When our participants made a single decision that
applied to all their partners, as is typical in the existing literature
(18, 19, 22), we observed significant differences in cooperation
between static and dynamic networks. However, when our par-
ticipants made targeted choices for each of their partners, co-
operation rates in static networks were as high as cooperation
rates in our dynamic networks. As we argued above and our
results showed, making a single decision to either cooperate or
defect with all partners decreases cooperation in static networks,
because participants have no other recourse to punish alters that
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have previously defected. Given that prior work on networks and
cooperation generally requires that participants make a diffuse
decision that applies to all actors, we argue that existing findings
overstate the degree to which network dynamics promote co-
operation, relative to static networks. In particular, we find that
static networks, where people can make targeted decisions about
whether to cooperate or defect in each of their relations yield
cooperation levels that rival those typically observed in dynamic
networks. Future research on networks and cooperation should
mind this important design decision.
In closing, we provide evidence for the importance of network

topology and decision processes that shape cooperation in situations
characterized by conflicts between individual and collective interests.
Our work builds on and extends related work on network dynamics,
but highlights the importance of dynamics relative to reputational
processes. In static networks, the ability to decide whether to co-
operate or defect with each partner results in sustained cooperation,
at rates similar to those we observed in dynamic networks. In dy-
namic networks, we find strong structural effects and very high levels
of cooperation throughout our study, with rather negligible effects of
reputation. That is, we show that networks—both static and
dynamic—can yield sustained cooperation among humans.

Materials and Methods
The Institutional Review Board at the University of South Carolina reviewed
and approved this research. There was no deception. The experiment was
conducted using Amazon Mechanical Turk, an online crowd-sourcing

platform that is frequently used for behavioral experiments (37–39). Workers
from Amazon Mechanical Turk read an online informed consent form
detailing the study procedures, approximate length of the study, and their
expected payment for participating. Those who agreed to participate fol-
lowed a link to a custom Web app that went over the instructions, em-
bedded them within networks, and recorded their behaviors as they
interacted with other workers. Several comprehension check items, with
feedback, were included in the instructions (SI Appendix). Data were col-
lected in the spring and summer of 2017. Data for the follow-up conditions
were collected in the autumn of 2017. Each session lasted ∼30 min. Partici-
pants were paid a $2.50 show-up fee and were awarded a bonus based on
how many MUs they acquired throughout the study (1,000 MUs = $1.00).
The data were modeled using random intercept multilevel or mixed effects
models. Cooperation was fit using the logistic link with alters nested in
rounds, rounds nested in participants, and participants nested in networks.
Clustering and earnings were fit using an identity link. The network-level
clustering coefficient was measured at each round, and earnings for each
round were nested in participants, who were nested in networks. Finally,
participant choices of which alter to drop and which new alter to add were
modeled using conditional logistic regression with SEs adjusted for multiple
decisions within networks.
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